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1. Introduction

This paper extends the two—attribute approximation theory for cardinal

utility functions in Fishburn (1977) to three or more attributes. It is

assumed that u is a continuous real valued utility function on a closed and

bounded rectangular subset T of n—dimensional Euclidean space and that u is

unique up to positive affine transformations of the form u~~ where U~~~(X) =

au (x) + b with a > 0. For expositional simplicity we shall let T =

Each approximation v for u on T that is discussed is composed of simple

algebraic combinations of univariate functions and satisfies the form

v(x ,...,x )  
~ 

f1 .(x )f2 .(x).. nj~~n~~ 
(1)

The distance between u and v that we shall use is the uniform norm D(v,u) =

sup jv(x) — u(x)I. Because of the added complexities of higher dimensions,

only simple approximations of form (1) will be examined. The next two sections

consider respectively the simple additive and multiplicative approximations.

The final section then briefly looks at three other approximations. All but

the last approximation use n or more univariate conditional utility functions .

The last approximation is a multilinear interpolation form that only requires

estimation of u at the 2~
’ vertices of T.

As in Fishburn (1977) we shall say that v is affine preserving if and only

if, for all a > 0 and b , v
a
~
)
(x) = av(x) + b is equal to the right side of (1)

for all x ~ T when every occurrence of u on the right side of (1) is replaced

by au ÷ b. We shall let v
b
(x) denote the right side of (1) when u therein is

replaced by au + b. Hence v is af fine preserving when Vab (X) 
= V

ab
(X) for all

a > 0, b and x E T. 

~~ :
_ _

~~T _
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Approximation v is monotonlcity preserving iii x . if and only if v is

tnonotonic increasing (decreasing) in x
1 
whenever ii is monotonic increasing

(decreasing) In xi,. And v is monotonicity preserving if it is monotonicity

preserving in all n variables.

The utility function u will be said to be conservative if and only if

it strictly increases in all n variables and u(x) ÷ u(y) > u(z) + u(w)

whenever x,y,z,w E T and there are distinct i,j € {i,. . . ,n} such that
x~, 

= > y~, 
= ~~~~ y~ = z. > x . = w~, and X~K 

= Z
k 

= for all k ~ {i,j}.

This definition corresponds to Richard ’s (1975) conception of strict multi—

variate risk aversion. Approximation v is conservatism preserving if and only

if v is conservative whenever u is conservative.

2. Additive Approximations

The basic results for the simple additive approximation that uses one

conditional utility function for each attribute are given in our first theorem.

Refinements for the additive approximation are discussed later in the section.

Here and later we shall let u (x ) u(x0,.. .,x0 ,x ,x0 ,...,x°) when x0 is
o i i— i i i+i

a fixed point in T. Although this notation is ambiguous in the sense that

u (.5) does not tell which i is referred to, it is typographically simple and
0

should cause no confusion.

THEOREM 1. Given fixed x0 = (x °,. . . ,x°) E T let

v(x)  = u (x
i

) — (n — l) u (x 0) for all x E T. (2)
i=1 0

Then v(x) u(x) whenever x~ = x~ for at least n — 1 of the i € (1, . .  ., n },

and v is affine preserving and monotonicity preserving . In addition, 
~~~~~~~~

- -  —~~ 
.
~~~~ -----~~—------- ..- .. - a -
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M = maxT u(x), in = min
T 
u(x) and W = M — m. If x0 is chosen so that u(x°) =

(M + m)12 then, when n > 2,

(a) D(v ,u) < W(n + 1)/2 if u is not monotonic in more than n — 2

variables;

(b) D(v ,u) < Wn/2 if u is monotonic in n — 1 variables;

(c) D(v ,u) < W(n — 1)/2 if u is monotonic in all n variables.

REMARKS. This theorem subsumes Theorem 1 [Fishburn, 1977] for n = 2. It

is clearly not very encouraging for the additive approximation for larger n

since, for example, D(v ,u) could well exceed W = max u(x) — m m  u(x) even

when u is nionotonically increasing in every variable and x0 is a point that

has the mid—value u(x°) = (M + m)/2, provided that n > 4. Note also that

monotonicity does not affect the upper bound on D(v,u) unless it holds for at

least n — 1 variables.

PROOF. The first part of Theorem 1. is obvious from (2). The latter part ,

with M, in , W and x0 given, can be proved by worst—case arguments. By change

of variables if necessary , it will suffice to consider u monotonically

increasing in its first k variables for k E {O, n — 2, n — 1, n}. For k 0,

a worst case is u (x ) = M for all j and u(x) = in , in which case D(v ,u) =
0 i

riM — (n — l)(M + m )/ 2  — m = W(n + 1)12. For k = n — 2 with x~ < 1 for each

i < n — 2, we could have each t.t (x ) very near to M for all i with u(x) near
O i

to in , so again D(v,u) < W(n + 1)12. A worst case for k = n — 1 has x1 
>

for i = 1,...,n — 2 and x < x0 with u (x ) near to M for all i <. n — 2,
n—i ~— i o —

u (x ) slightly less than (M + m)/2 and u (x ) — u(x) near to M — m.
o n i  o ~
(If we take x~, > x~ for all i < n — 1, then u (x ) — u(x) must be negative,

k---
—-

~

--- - -.- .
~~~~~~~ 
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but with x
i 

— x~ of different signs for different i < n — 1 the sign of

u (x ) — u(x) is not determined.) So for k = n — 1 we get D(v,u) < (n — 2)M +
0 n —

(M + m)/2 - (n — l)(M + m ) / 2  + (M — m) = Wn/2. Finally , for k n a worst

case is u(x) and all ui (x
~
) near to M, hence D(v,u) < riM — (n — l)(m + M ) / 2  —

M = W ( n  — 1)12. Q.E.D.

If utilities are fully additive over the attributes then D(v,u) = 0 when

(2) is used. More generally , if the attributes can be grouped into subsets

such that utilities are additive among the subsets, then Theorem 1 can be

used for each subset with two or more attributes . Suppose for example that

{I ,...,I
N
} is a partition of U,... ,n} with ILl  = n . > 1 for j = l,...,N

such that there is a real valued function u
j on [0,

1] ~ for each j with

N
u(x) = u (x(I )) for all x € T, (3)

j=i i j

where x(I.) is the n.—tuple of x
i 
for i E I , . Let ~1. = max u~ (x(I~ ) )~

= mm u~ (x(I~)) and W~ = — lfl
j  

for each j——so that M = EMS, in = Em~

and W = EL in Theorem 1——and let x0 satisfy u~ (x °(I~ )) (M~ + ni~) / 2  f or each

j .  Then , when V
j 
is an additive approximation of u . like (2) , D(v .~ u~) 0

if n
j 

= 1 and, for n . > 1, D(v .~ u~) is bounded above by W .(n~ + 1)12 , W .r1~ /2

or W~ (n . — 1)/2 according to whether U
j 
is monotonic in fewer than nj 

— 1,

exactly n
j 

— 1, or nj variables. In addition, with v = v+. . .+vN, it follows

that

N
D(v ,u) < ~ D(v~~u~).

j=i

Hence if u is monotonic in all variables then D(v,u) < E~W~(n~ 
— 1)/ 2 <

(max W~)(n — N)/2.

_ _ _ _ _  
- ‘0
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The preceding paragraph shows that more information about u than is

presumed in Theorem 1 allows tighter bounds on D(v,u). A similar procedure

allows the following refinement without assuming partial additivity as in

(3). This refinement can of course be used in connection with (3) when (3)

holds.

ThEOREM 2. Suppose (2) holds with M, m, W and x° as given in Theorem 1

and suppose further that M = max u (x ), m = mm u (x ) for i = l,...,n andi 0 i i D i —  —

that u is monotonically increasing in its first k variables. Then, when

u (x°) = u (x °) = (M + m)/2  f or all i, and n > 2:
D i — —

(a) D(v ,u) < max 
~Z~~1(M~ 

- , — m~)~ + w/2 if k < n — 2;

(b) D(v ,u) < max ~~~~~~~ 
— 

~~
)+ M - mm M., - mj) 

- in
n

+ max m . + W/2 i f k = n — l ;
i<n—l 1 —

(c) D(v ,u) < max 
~~~~~~~ 

(N . — + M + in - mm {M. + M .: 1 ~, I < 3 < a],

~ 
(k~E - mn~~) - M - in + max {imi~ + m . : 1 < i < 3 < n}~ +

W/ 2 if k it.

PROOF. In each of (a), (b) and (c) the M
i part comes from a worst—case

maximization of v(x) — u(x), and the m . part comes froir a worst—case maximization

of u(x) — v(x). I shall prove only the Mi parts of (b) and (c) since their

proofs are symmetric and since (a) is obvious. For k = n — 1 in (b), 

- —--  —. .. .. — -_—_J_•_ —S
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a— i
v(x) — u (x) = ~ Eu (x.) — (M + m ) / 2 }  + [u (x ) — u(x)]. If we allow

i i  
~ 

1 o a

one x. < x 0 for i < n then u (x ) — u(x) can be made near to M — in and the
1 i o n n

u (x.) for 3 ~ i and 3 < n — 1 can be taken near to their M .. We also choose
0 . ]  — J
the i for x~ < x~ as the i with the smallest M~ and make u(x1) slightly less

than u(x°). It is easily checked that this “tends” to maximize v(x) — u(x)

and it implies that v(x) — u(x) < M~ 
— m + 

~i<n—l 
(M
i 

— (M + m ) / 2 )  — mm

CM1
: i < a — 1] + (M + m) / 2  = 

~i<n—l 
(M
i 

— (M + m)/2) + N — miii CM1
: I < a - 1)

+ W/2. Finally , for k = a in (c), the max of v(x) — u(x) will occur with all

u (x ) = M except for 0, 1 or 2 i for which we take u (x ) slightly less than
D i i 0 i

u(x°). The worst case here arises if we choose two i for u (x.) < u(x°), in
0 1

which case u(x) can be as small as In. When the two i are chosen so that their

M~ are as small as possible, the result is v(x) — u(x) < 
~~~1

(M
~ 

— (M + m ) / 2) ÷

(N + m)/2 - miii CM1 + M .: 1 < i < 3 < n} + 2[(M + m)/2] - in = 
~~~~~~~~~ 

(M~ -

(M + m)/2) + N + ni - mm CM
1 + M

3
} .4- W/2. Q.E.D.

Fishburn (1977) shows that if (2) is used when u is conservative and a = 2,

and if ~ = u(l,O) + u(0,l) — u (O ,O) — u (l ,l ) ,  then D(v,u) cannot be less than

i~i/4 but x 0 can be chosen for (2) to ensure that D(v,u) < ~/3. Because

~ < W, the ~/3 bound is less than the upper bound in Theorem 2(c), which is

never less than W/2. Although the conservatism picture is less clear when

n > 3, several results can be established for this caae. We begin with two

lemmas.

LEMMA 1. Suppose u i s  conservative, x . ( y. for 1 l...,n, and I and

J are nonempty disjoint subsets of (1,... ,n} with DJJ = Ci ,... ,n}. Then

u(x~ for i € I, for 3 E J) F u(y~ for i € I. x~ for 3 E J) > u(x) + u(y), (4)

— 0
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~ u(x~ ,y f or all j # i) > u(x) ÷ (n - l)u(y), (5)
1=1

ii

~ u(y.,x . for all j # i) > u(y) + (a — l)u(x), (6)
i=i 1 3

and > holds for each of (4), (5) and (6) if x. < for some i.

LEMMA 2. Suppose u is conservative, v is given b1 (2) , and j E Cl,... ,nJ.

If x~ < x~ for all i ~ j, then v(x) — u(x) strictly decreases in x. when the

x . for i 
~ 
j are fixed; If x~ > x~ for all I 

~ 
j ,  then v(x) — u(x)  s t r ic t ly

increases in X
j 

when the x1 ~~~ I ~ i are fixed.

PROOF OF LEMMA 1. Let u be conservative with x~, ~ 
for i = 1,... ,n.

If I = Cl] then conservatism implies

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
+ 

~~~~~~~~~~~~~~~~~~~~~~

> u(Y~~ ...~ Yj~ xj÷ 1~~. . . i x )  + ~~~~~~~~~~~~~~~~~~~~~~~~~~~

for j = 2,...,n. Addition of these inequalities over 3 from 2 to a, plus

cancellation of identical terms, yields (4) for I Cl]. Since the same

procedure holds for any I = Ci], (4) holds when I I I = 1. Proceeding by

induction, suppose (4) holds for I~ 
= k — 1 > 1. This hypothesis and the

result just  proved for  III = 1 respectively imply u(x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +

u(x ,y ,. • • ~~Yk~
XK+i~~• . ., x )  > u (x)  + u(x ,y ,. .. ,y ) and u(x ,y ,... 

~~~~~~~~ 
+

~~~~~~~~~~~~~~~~~~~~~~~~~~~ > u(x ,y ~~~~~~~~~~~~~~~~~~ ,x )  + u ( y ) , the sum of which

yields (4) for I = Cl ,... ,k}. It follows that (4) holds in general. Using

(4) we then have 

-

~~~~~~ 

- 

- - j
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u(x ,y ,. .. ,y ) + u(y ,x ,y ,... ,y ) > u(x ,x ,y ,.. .,y ) + u(y),
1 2 n 1 2 3 fl 1 2 3

u(x ,... 
~~~~~~~~~~~~ 

,y) ÷ u(y ,. ‘~ k’~~+1 ’~ k+2’~ 
.. ,y~~

> u(x ,.. •
~
X
~K+ 

,y k+ ,.. .,y ) + u (y) for k = 2 , . . .  ,n - 1.

and the addition of these n — 1 inequalities implies (5). Inequality (6) is

proved in a similar way. If x~ < y1 
for some 1 then it follows from the

procedures used to es tablish (4) , (5) and (6) that the y will hold with >

replaced by > . Q.E.D.

PROOF OF LEMMA 2. Given the hypotheses of the lemma suppose for definiteness

that j = 1.. Then v(x) — u(x) = ~ [u (x ) — u (x °)] + [u (x ) — u(x)]. If the

for i > 1 are fixed at values x~~< x~ , and if x < y ,  then (4) with I = {i}

implies that u (x ) — u(x ,x ,.. .,x ) > u (y ) — u (y ,x ,... ,x ). Theref ore

v(x) — u(x) de:reases as x increas:s with the < fixed f:r i > 1. The

proof of the final part of Lemma 2 is similar. Q.E.D.

Using Lemmas 1 and 2, we now coitsider what happens to v(x) — u(x) and

u(x) — v(x) when n > 3, u is conservative , and v is given by (2) with u(x°) =

(M ÷ m)/2. Suppose first that the maximum of u(x) — v(x) occurs at x for which

x . < x0 for I € I and x . > x0 for I E J. If x0 is in the interior of T then
1 i i i

Lemma 2 implies that neither I nor J is empty , and if x0 is not in the interior

then the definition of I and J can be modified if necessary (< for I, > for 3)

to ensure that neither I nor J is empty . Then, by (5) and (6) respectively ,

u (xi
) > u(x

1 
on I, x~ on J) ÷ (III — l)u(x°),

1~~~

u (x
1
) > u(x~ on I, x . on J) + (IJ I  — 1)u(x°),

J o

~ 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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so that 
~
u(x i

) > u(x. on I, x~ on J) + u(x~ on I, x. on J) + (it — 2)u(x°) .

It then follows from (2) that

u(x)  — v (x) < u (x) + u (x °) — u (x
1 on I, x~ on J) — u(x~ on I, x~ on J) < W/2.

Therefore, when u is conservative and u(x°) = (M ÷ m)12 , u(x) — v(x) cannot

exceed W/2.

Consider next the maximization of v(x) — u(x) when u is conservative, and

let M. = max u (x ) and in . = mm u (x.). For convenience we examine v(x) — u(x)1 o i 1. o I

when x~ < x~ f or I = 1,... ,k and x~ > x~ for I > k. When k = 0, Lemma 2 Implies

that v(x) — u(x) is maximized at x = (1,... ,l), where

v(l ,.. .,l) — u(l ,... ,1) = 

~~ 

(Mi 
— 

~?) — W/ 2.

assuming that u(x°) = (M + mn)/2. Similarly, when k = n, Lemma 2 Implies that

v(x) — u(x) is maximized at x = (0,... ,O) ,  where

- u(O,... ,O) = W/2  - 
~~ 

(
~ 

-

Inequalities (6) and (5) imply respectively that v(l, . .  . ,l) — u(1,.. . ,l) > 0

and v(O,.. .,O) — u (O ,. ..,O) > 0. Since Lemma 2 implies that v(x) - u(x)

cannot exceed v(l,. . ., l) — u( l ,.. . ,l) when k = 1 and that it cannot exceed

v(O , ..,O) — u (0 ,...,O) when k = n — 1, it remains only to examine k E {2 ,....,

a — 2} when a > 4. In the latter case a worst—case argument shows that

v(x) — u (x) < 
~~ (N . — ÷ W/2 ,

i=k+i 1

~~~~~~~~~~~~~~~~~~~ _ _ _  _ _ _  —
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and the worst of these wors t cases occurs when k 2. Since it is easily

seen that the upper bound in the preceding expression with k = 2 exceeds

both v(l,. . . ,l) — u(l,... ,l) and v(O,... ,O) — u(O,. . . ,O), and since the
two i for which x~ < x~ could be any two of the I € Ci ,... ,n], we have

established the fact that v(x) — u(x) Is bounded by 
~~~ 

(M~ — (M + m)/2)

÷ M + in - mm CM . + M .: 1 < i < 3 a] + W/2.

The following theorem summarizes the foregoing conclusions.

THEOREM 3. Suppose a > 3, u is conservative and v is given by (2) with

u(x°) = (M ÷ m ) / 2 , M = max u(x), in = mm u(x), W = M — in , and M = max u (x.),— i

in . = mm u (x ) for i = 1,.. .,n. Then max [u(x) — v(x)] < W/2, and
1 0 i —  — —

n = 3 ~ max [v(x) — u(x) ] = max 

~~~~~~~ 

(N . — — W/ 2 , W/2 — 

I~ i 
(~ —

a > 4 ~ max [v(x) - u (x)] < 

~~ 

~~~~ 
- 

~~
)+ M +m - miii CM~ ÷ M 3 : 1 < i<j < a)

÷ W/2.

Although the bound on v(x) — u(x) for n > 4 may be no better than the bound

on D (v,u) in Theorem 2(c), other choices of u(x0) under conservatism may give

better general bounds. For example, if u is conservative and if x0 = (1,. ..,l) ,

then Lemma 2 shows that D(v,u) = v(O ,. . . ,0) — u(0,. . . ,O) = u(O,l,.. . ,l)+ . .

u(l,. . .,l,O) — (a — l) u(l ,. . .,l) — u(0 ,.. .,0) ,  which Is strictly positive by

(5) but can never exceed W.

_____ 
— - - . -

~ 
~. ;.~~

- ______

- -

~~~~~

- -~~~---~~— --— - -—----—-— -~~~~ 
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3. MultiplIcative Approximations

The basic multiplicative approximation for u with fixed point x0 and

u E u(x°) ~ 0 Is

n
n—iv(x) = H u (x )/u for all x € T. (,)

i=i ~

This is exact when x
i 

= x~ for at least n — 1 of the i E Cl ,... ,n}, it is

monotonicity preserving if u has constant sign, and it is not generally

affine preserving. When au + b # 0, the af fine transformation ~ab 
= au + b

on the right side of (7) gives v (x) = 1T(au (x ) ÷ b)/(au + b) i u  wi th

V
b

(x) = vab (x) = av (x) + b if a~~ least a - 1 of the i have x. = x~. When

the v
ab are normalized by the transformations W b

(X) = (V
b

(X )  — b)/a, we get

]T(au (xi) + b) — b (au + b) n i

w (x) = ° . (8)ab n— ia( au + b )
0

The family fw : a > 0, an + b # 0) is the set of basic multiplicativeab o

approximations for u with fixed point x0. The different functions in this

family correspond to different choices of origin and scale unit for u.

Because a family {W
b
} of multiplicative approximations corresponds to

each fixed point x0 , multiplicative approximations are more flexible than

additive approximations. An example of this flexibility is shown by the

fact that any additive approximation can be approximated to any desired

accuracy by a multiplicative approximation .
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ThEOREM 4. Suppose x 0 is the fixed point for (2) and (7), u(x°) ~ 0,

b # 0, and v is given by (2). Then for every 6 > 0 there is an a > 0 for

which D(w b,V) < 6.

PROOF. The terms in the numerator of (8) cancel and we are left with

ab
n i

v(x) plus terms in a2 through a
n. When the leading a in the denominator

of (8) cancels into the numerator we are left with

n—I n— i
= 

b v(x) + terms in a through a
ab’ ’  n—i

(au + b)
0

where v(x) is given by (2). With a > 0 and small, and b ~ 0, It follows

that w b
(x) -

~~ v(x) as a -
~ 0, and the convergence of w b to v is easily seen

to be uniform. Q.E.D.

The next theorem, which corresponds to Theorem 5 in Fishbunn (1977),

shows how much v might differ from u when v is given by (7). The theorem

considers all cases in which max u(x) — mm u(x) = 1 with mm u(x) > —1/2.

A scale transformation that maps u into au, a > 0, will map D(v,u) into

aD(v ,u).

THEOREM 5. Suppose n > 3 and v is given by (7) with mm u =

max u = r + 1 and u = u(x°) ~ 0. If —1/2 < r < 0 then it is always possible
~~~~~~~0 

—

to have D(v,u) < 1 by choosing u = r + 1. If r > 0 then:
0

(a) If u is monotonic in no more than a — 2 variables, it is always

possible to have D(v,u) < [(r + 1)
fl+1_ r’~

4-t ]/[(r ÷ 1)n ÷ r~ J by choosing

= [( r  + 1) fl ÷ r’~J/(2r + 1);0

_±~~ -2~ ~~~~~~~~~~~~~~~ . . . .



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13

(b) If u is monotonic in a — 1 variables, it is always possible to

ii n n— i n— ihave D(v,u) < [(r + 1) — r ]/[(r + 1) + r ] by choosing u =

[(r + 1) fl~~i ± r~~~
’]/(2r + 1);

(c) If u is monotonic In all variables and a = 3, it is always

possible to have D(v,u) < (2r~ + 3r ÷ l)/(2r2 + 2r + 1) by choosing u2 =

r2 + r + 1/2;

(d) If u is monotonic in all variables and a > 4, then D(v,u) <

2 ~~~2 ti 2 ~~~~ fl—i[u (r + 1) — r ]/[u (r + 1) ÷ r ] when u is the positive real
0 0 0

root of

u~~
1 (2r + 1) — u2 (r + l)~~~2 = r’~~~(r ÷ 1), (9)

and there is no other value of u that can guarantee a smaller upper bound on
0

D(v ,u).

REMARKS . The bounds on D(v,u) given prior to part (d) are also the best

possible without assuming more about u. Monotonicity has no effect on the

upper bound when the origin is interior to u(T), but is important when

mm u(x) > 0. In each of (a) through (d), D(v,u) < 1 when r = 0; as r -
~ ~~

the bounds on D(v,u) in (a) through (d) respectively approach (a + 1)12 ,

n/2, (n — 1)/2 and (n — 1)12 , which are the same as the respective bounds in

Theorem 1 when W = 1. Hence for larger a the upper bounds on D(v,u) with

r = 0 in the multiplicative approximation are considerably better than the

general bounds for the additive approximation. As will be shown in the following

proof , there is an important difference between the a = 3 and a > 4 cases when

r > 0 and u is monotonic in all variables. It may also be noted that when r = 0



~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~- -~~~- ——- --_ .—— — _,-
~~~~~ —--~~~~

-

14

in part (c), any u2 € [1/2,1] will give D(v,u) < 1. Hence in all cases we
0 —

can guarantee that v is monotonicity preserving and that D(v,u) < 1 by taking

r = O a n d u = 1.
0

PROOF. Throughout this proof E is an abbreviation for Iv(x) — u(x) l =

flu (x4)/u~~~ — u(x)I and u is assumed to increase in x if it is monotonic
0 0

in x.. (If u decreases In ~~~ a change of variable from x~ to 1 — x~ gives

the same conclusions.)

Given the hypotheses of Theorem 5, assume throughout this paragraph

that —1/2 < r < 0. Suppose first that u > 0. With no monotonicity,
0

n fl—i n—i n—imax E < max C ( r  + 1) /u — r, (r + 1) — r(r + 1) /u }. The latter max
— 

0 0

is minimized at u = r ÷ 1, where max E < 1. Even if u is mnonotonic in every

variable, by taking x
1 

< x~ for one i it is still possible to have a worst—

case value of u(x) — v(x) near to (r + 1) — r(r + l)~~~ /u~~
1
, which is

minimized at u = r ÷ 1 with value 1. Suppose next that u < 0. If n is odd
0 0

then u
uu i  

> 0 and we cannot improve on the u > 0 result since r ÷ 1 > r i .

If a I: even then E could be as large as (r ÷ 1) — (r + l)’~/u~~
1
, whi:h is as

great as 1 when r < u < 0. Hence, when r < 0, we cannot improve on max E < 1
~~~~ 0 —

at u = r +  1.
0

We assume henceforth in this proof that r > 0. If u is monotonic in no

more than n — 2 variables, worst—case considerations give max E <

max {(r + l) m
~/u

n_l 
— r, (r + 1) — rn /u~~

i }. The lat ter max is minimized
0 0

n—i n awhen its terms are equal, i.e. when u = [(r + 1) + r ]/ ( 2 r  + 1). This

v:lue of u is in [r, r + 1], and it implies that max E < [(r + 1)fl+i —

r ]/[(r + 1) + r
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Suppose next that u is monotonic in its first n — 1 variables. The

worst—case values of v(x) — u(x) will arise either with all x . ~ x~

for I = 1,... ,n — 1 or with x . > x0 for i < a — 2 and x < x° , and hence
1.~~~~ I. — n— i n—i

n n—i n— i fl-2max [v(x) — u (x) ] ~ max ((r + 1) /u — (r + 1), (r + 1) /u — r}. i~1e— 0

worst—case value of u(x) — v(x) is obtained either with x
1 

< x~ for I ~

1,... ,n — 1 or with x < x~ for  I < n — 2 and x > x 0 , and thereforei —  I — n—i n—i
n—i n—i n—i ~ —2max [u(x) — v(x) ] < max {(r + 1) — (r + l)r /u , (r + 1) — r In }.

— 
0 0

Since the second term in the latter max is never less than the first term,

a il— i n—i n—2 n—i n-2max E < max C (r + 1) /u — r — 1, (r + 1) /u — r, r + 1 — r /u } .
— 0 0 0

The first two terms on the right side of this inequality decrease in u and

the third term increases in u . The second and third terms are equal when

u~~
2 

= [( r  + l)~~~’ ÷ r
fl_i

]/(2r + 1) with value [(r + 1) fl 
— r~ ] / [ ( r + 1) fl~~ +

r’11 ] ,  which is the minimum of the right side if this value is as great as

the first term’s value at the indicated u . Thus to complete the proof of
0

part (b) of the theorem we need to show that

n a a
(r+l) < 

(r+l) — r

1rn
~ + (rfl)

n_
il (n—i)/(n—2) 

— r — 
— n i  ÷ rn~~

L 2 r + l  J

After some algebraic manipulation, this inequality can be written as

(2r + l)[(2r+ l)(r + 1)n]
n—2 

< [(r + 1) n i  + n
ii_i ] [ 2 ( r  + 1) fl 

+ r
n i

]
n 2

.

This is true since (2r ÷ 1) ii 1 (r ÷ 1)n(n 2) 
< 2~~

2
(r + l)~~~~

2)
[(r + 1) i~~~~ 

+

n—i n—i n—2 ~ —i n—ir ] ,  or (2r + 1) < 2 [(r + 1) + r ] ,  as the reader can readily show.
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Finally , suppose that u is monotonic in all a variables . For worst

cases we consider x
1 

> x 0 for  n , a — 1 or n — 2 variables for v — u , and

x . < x 0 for a , a — 1, or a — 2 variables for u — v. In the v — u case ,i—  i

the worst a — 1 case is dominated by the worst n case; for u — v, the

worst n case is dominated by the worst n — 1 case , as is easily proved .

This leaves us with

ii n—i n—2 n—3 n—i a— imax E < max {(r + 1) In — r — 1, (r + 1) /u — r, r + 1 — (r + 1)r /u
— 0 0 0

n—2 11—3
r + l — r  In }.

0

When a = 3, the second and fourth terms on the right side equal 1, and the first

and third equal (2r2 + 3r + l)/ ( 2 r 2 + 2r + 1) when u2 = r2 + r + 1/2. This
0

verifies part (c) of the theorem. Part (d) is clearly true when r = 0.

Assume henceforth that n > 4, r > 0 and u is monotonic in all variables.

It is easily seen that the right side of the preceding max E inequality is

minimized when one of its first two terms equals one of its last two terms.

We shall prove that the minimum occurs when the second and third terms are

n— 2 n—3 fl—i f l iequal , i.e. when (r + 1) /u — r = (r + 1) — (r ÷ l)r In . The
0 0

applicable value of u that satisfies this equation and the corresponding bound
0

of D(v,u) are given in part (d) of the theorem. To complete the proof we need

to show that , when u is the positive root of (9), the first and fourth terms
0

on the right of the preceding max E inequality cannot be greater than the

second or third term. Because the first two terms decrease in u and the
0

last two increase in u , it will suffice to show that the value of u at
0 0

which the first and third terms are equal is less than u given by (9), and
0

L~ 
- ._ _- - ; ,

-_



and that the value of u at which the second and fourth are equal is greater

than u by (9).

Consider the fourth term, i.e. r + 1 — r~~
2
Iu~~

3
. This equals the

second term 1ff u~~
3 

= [ (r  + 1)n—2 + r~~
2 ]/ ( 2 r  + 1). At this value of u

the third term exceeds the fourth terni 1ff u2 > r ( r  + 1), or , af ter

substitution and simplification, iff [(r + l)~~~~~~~
2 

— r~~~~~~
2 ] [(r  + l) ( 3

~~
2 

—

(n—3 )/2r I > 0, which is obviously true. Since the third term exceeds the fourth

when the second and fourth are equal, and since the second decreases in U

while the third and fourth increase in u , the value of u at which the second
0 0

and third are equal must be less than the value of u at which the second and
0

i.hird are equal.

We now examine the first term, i.e. (r + l) T
~/u

’ — (r + 1). This equals

the third term if f u~~~ = [ (r  + 1) 11_i + r~’~ ’]/2. At this value of u the
0 0

second term exceeds the first term 1ff (r + l) 1 1 2
1u

f l 3  
— r > (r + l) n,Un_i —

(r + 1) which , after substitution and algebraic manipulation, occurs 1ff

> 
[(~~~1)n—i (2~~~1) — r

n_h
]
n i

(r+l)~~~
1)(

~~
2)[( r+l) 1 1 i  + r~~~ ]

2

The right hand side of this inequality equals 1 at r 0 and approaches 2n 3

as r -~~ ~~. (The latter value is most easily shown by expanding numerator and

denominator in powers of r. The numerator equals 2~
’ ir

2 1 1 2  
plus terms in

smaller powers of r, and the denominator equals 4r2’~~
2 

plus terms in smaller

powers of r.) Moreover, it can also be shown that the derivative of the right

side with respect to r is positive. Since my proof of this is long but

algebraically straightforward , I shall not present it here. It then follows 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~ 
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that the preceding inequality is true for all r > 0. Hence the second term

exceeds the first term when the first and third are equal. The monotonicity

aspects of the terms then allow us to conclude tha t the u value at which the
0

first and third terms are equal is less than the u value at which the second
0

and third terms are equal. Q .E .D .

Equation (3) of the preceding section expresses a case in which the

attributes can be grouped into subsets such that utilities are additive among

the subsets. Given (3), one could approximate each u . in (3) by a simple

multiplicative rather than additive approximation . For example, if (3) holds

and u and the u
3 
are scaled so that mm u(x) — mm u .(x(I

3
)) 0, max u(x) =

u(x°) = 1 and max u
3

(x(1
3

))  = u
3

(x ° (I
3

) )  = M
3 

with EN . 1, and if u
3 

is

approximated by

v (x(I ) )  = fl ujx , x,~ for k t t \ C i} ) I M . 3 ,
3 i’1 3

— j

then Theorem 5 above plus Theorem 5 in Fishburn (1977) give D(v,u) <

E.D(v
3
,u

3
) < E {M . : n . > l}.

Instead of additivity over subsets , it might be true [Fishburn and Keeney,

1975] that u is multiplicative over subsets. A basic multiplicative form for

the partition CI ,.. ., IN ] of Cl ,.. .,n} with I .,~ = and f i xed point x0 with

u(x°) = 0 is

N
Ku (x) + 1 = It [K u .(x(I .) )  + 1] f or all x

i—i 3 3

where K # 0 and u . (x(I~ ))  = u(x
1 on I~ , x~ on Cl ,. ..,n}\I

3
). The positive

a f f ine  transformatio~i Ku(x)  + 1 for K > 0 or — Ku (x)  — 1 for K < 0 puts this

into the form

- -
——--—_- - _ - .— ~~~~~ -—~~~~-- —~~ - -_ _
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N
u(x) = II u .(x(1 .))/u~~~

’ for all x C T, (10)
j=i 3 -3 0

where u € {-l ,l}. If n . 1 with I {k} then u.(x(I.)) = u (xj. If
0 3 3 3 3 O K

~ 2 then u3 
in (10) could be approximated by either an additive or

multiplicative form over the I E I . If (10) holds with u C C—l ,l}, and

v . approximates u
3 
with v(x) — llv

j
(x( 1

3
) ) / u

N_ 1
, then

N N
D(v ,u) = max H u (x(I.)) — II v.(x(I.))i,

xET j i  ~ j=i ~

which can be used as a basis for further analysis.

As in Theorem 2 for the additive approximation , refinements can be made

in the approach of Theorem 5 when the range of u (x.) is taken into consideration.
~ 

1

To illustrate, suppose that u is scaled so that M = max u(x) and in = mm u(x) ~ 0,

and let in (x°) = mm u (x ) and M (x°) = max u (x ). Then, when u is not
1 0 1 1 0 1

monotonic in more than n — 2 variables, a worst—case analysis says that

D(v ,u) < max { It M
i

(x 0)/ u (x 0)
n_i 

- in, M — II
i—i i—i

and similar though more complex expressions apply to the other inonotonicity

cases. As in the proof of Theorem 5, an effort could be made to choose x0 to

balance or equalize the terms on the right sides of these expressions. However ,

unlike when (2) is used, we know that the relative accuracy of v under (7),

i.e. D (v,u)/ [M — m l ,  depends on the choice of M and in as well as on the choice

of x0 . Hence, when (7) is used, it is essential to consider the effects of

scaling in addition to the choice of x0 .

- .

_— - --- --- ~~~~~~~~~~~ 
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4. Other Simple Approximations

The approximations in the two preceding sections are based on one

conditional utility function for each variable. In this section we shall

briefly examine three other approximations among the vast number that could

be considered. The first of these is based on two fixed points in ‘I’ and

uses two conditional utility functions for each variable. The second focuses

on one variable as the key aspect of the situation and uses 2
11_i 

conditional

utility functions for this variable. Each of these functions corresponds to

a vertex of the other n — 1 variables. The third and simplest approximation

dispenses with conditional utility functions altogether. It uses only the

values of u at the 2~ vertices of T and approximates u at other points by

multilinear interpolation.

A Bilateral Approximation

The first and most complex approximation that we examine in this section

corresponds to Fishburn’s (1973) bilateral independence form, which is based

on two conditional utility functions for each attribute. The approximation

uses two fixed points, x0 and x 1 . Letting u
~K

(x.) = u(x~ ,... ,x~~i ,xi,
x
k
÷i ,...,

x
k
) for k = 0,1, the bilateral approximation is given by

v(x) = u (x1
) — (n — l)u(x0) + Z{c(i ,...,i ) It 

~~ 
(x
1 

) :  s > 2
i=i 0 1 3=1 j 3

(11)

a n d l < i < . . . <i <a]
— 1

where 

- 
•-~~-~-~~-:1L i 

_ _ _  _ _ _ _  _ _ _ _ _ _ _ _ _-
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s+~:1&
c(i ,. ..,i )  = ~((—l ) 

~ u(~~ ’,.. .,x~~): 
~~~

. C (0,l} Lor each

I E. {j ,... ,i }  and 
~~
. = 0 otherwise),

u ( x ) -u (x ) + u (x °)— u(x °)
f = i i o i i_ i

u(x1) + u(x 0) — u (x°) — u (x 1 )
i i 0 1

provided that the denominator of f~ does not vanish. If u(x1 ) ÷ u (x °) =

+ u (xl) for one or more 1, thea (11) ca’n be simplified as described

in Fishburn (1973). [f x1 > x0 and u is conservative then the denominator

of each f
1 
is nonzero.

THEOREM 6. Suppose v is given by (11) with each f . well defined. Then

v is af fine preserving and v(x) — u(x) if either x. = x0 for at least n — 1

variables or x~ = xl for at least n — 1 variables.

PROOF. Since the transformation au + b , a > 0, sends c(i ,.. .,i) uiito

ac(i ,.. .,i) and has no effect on f ., it follows from (11) that v is affine

preserving. If x~ = x~ for all 1 > 1 then, since f1
(x~) = 0 for all i > 1 and

since each f1 product in (11) involves at least two variables, v(x ,x:,...,xo) =

u(x). Hence, in general , v (x) u (x) when x~ = x~ for at least a — 1

variables. On the other hand , if x~ = x1 for all I > 1, then f
i
(xl) 1 for

all i > 1 and it can be shown without undue difficulty that (11) reduces to

- _____________ 
. -~~~ - . — . .. -~~ ; _ _ •.‘. ,: ... • ~~ ~... 

_ - -
~~~~~~~~

— -
--- -_ ~~~~~~~~--- 

—--~~~~~
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v(x ,x’,...,x’) u (x ) + u (x’) — (a — l) u (x °)
1 2 0 1 Q i

+ (a — 2) u (x °) — u (x 1 ) + u (x °)i 1 1

+ f (x )(u(x1 ) + u(x °) — u (x °) — u (x 1 ) ]
1 1 1 1 0 1

a u (x ) .
1 1

Therefore v (x) = u (x) when x. = x1 for all i > 1, and in general v(x)  =

u (x) when x~ — xl for at least n — 1 variables. Q.E.D.

Approximation (11) is a natural generalization of the simple additive—

multiplicative form (14) in Fishburn (1977) and, as in the previous a 2

case, a general analysis of D(v,u) for (II) appears quite difficult. However,

the picture simplifies greatly if u is conservative and x° and x1 are fixed at

the extremes of T. Then, as shown by Theorems 6 and 7, both u and v are

conservative and they are equal if either at least a — 1 x1 0 or at least

a — 1 x
1 

1.

THEOREM 7. If u is conservative and v is specified by (11) with

— (0,...,0) and x1 — (l ,...,l ) ,  then v is conservative.

PROOF. Let u be conservative with v given by (11) with x° — (O ,...,0)

and x — (1,...,i.). For definiteness we work with the first two variables.

Given x > y and x > y , our main task will be to show that v(x ,y ,x ,...,x )
1 1 2 2 1 2 3

— v(y ,y ,x ,...,x ) > v(x  ,x ,x ,...,x ) — v(y ,x ,x ,...,x ) .  This is true
1 2 3 1 2 3 1 2 3

if and only if

— -~~~~ j - .- 
--- 

- 
--- -~~~~~~~.- —- ----- - _ _
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[1 (x ) - f (y )][f (y ) - f (x )J [c(l ,2) ÷ ~{c(l ,2,i ,... ,i ) II 1 . (x. ):
1 1 1 1 2 2 2 2 1 S

3 1

s > 1 and 3 < 1 < . . .  i
s 

< 
~~

}] > 0.

It is easily seen that conservatism of u implies that f(x ) — f ( y ) > 0 and

f (y ) — f (x ) < 0. The preceding inequality will therefore be valid if the
2 2  2 2

total c term is negative . If n = 2 then this term is simply c(l,2) ,  which is

negative by conservatism of u. Suppose then that n > 3. Let h
i 
and d

~ 
be

respectively the numerator and denominator of f1
(x
1
) as defined after (11),

and let e(y) = u(0,0,i) - u(l,O,y) — u(0,l,y) + u(l ,l,y) for each ‘~‘ € C0, l}~~~
2
.

it then follows that

S

c(l ,2) ÷ ICc(1,2,i ,...,i ) It f (x ): s > 1 and 3 < I < ...<i < a]
1 S j=,1 I

j 
i
3 

— — i 5

,n \ 1
= ( It d~ ) e(y) II h It (d

1 
— h

i
).

\j=3 I yE{o ,i }n—a fi:.y
1~~
}ifi:y.=oJ

By conservatism of u, d~ < 0, h~ < 0, d . — h . < 0 for i = 3,...,n and e(y) < 0

f or all y € {O ,l}~~2. Hence the preceding expression, or the total c term, is

negative. Therefore v(x ,y ,...) — v(y ,y ,...) > v(x ,x ,...) — v(y ,x ,...).
1 2 1 2 1 2 1 2

Moreover, by taking the variables in sequence, v(x ,x ,x ,.. . ,x ) —
1 2 3 11

v(y ,x ,x ,.. .,x ) > v(x ,l,x ,... ,x ) — v(y ,l,x ,. . . ,x ) > v(x ,l,l,x ,.. . ,x ) —1 2 3 11~~~~~~ 1 3 11 i ~ 
n 1

v(y ,l,1,x ,...,x ) > ...> v(x ,].,...,l) — v(y ,l,...,l) when x > y . By
i n i i i

Theorem 6, v(x  ,1,...,l) — v(y ,l,...,l) = u(x ,l,.. .,l) — u(y ,1,.. .,l), which
I 1 1

is positive when u is conservative and x > y . Therefore v increases In its
1 i

first variable when u is conservative and , by analogy, v increases in each

variable when u is conservative. It then follows that v is conservative. Q.E.D. 

~~~~~~~~ -~~ ~~~~~~~~~~~~~~~~~~ j
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An Approximation with One Key Variable

In many multiattribute situations one of the a attributes will be more

important than the others. We now consider an approximation that seems well

suited to this situation , especially when u is inonotonic in its variables.

The approximation is based on convex combinations of 2
11_i 

conditional utility

functions of the key variable , say x .  Each conditional function has the

form u(x ,A ,. .. ,A ) where A = (A ,... ,A ) is a corner point of the other
i 2 2

n — 1 variables with A . E C0 ,i} for each i. The explicit form of the

approximation is

n A . i—A .
v (x) = I n  x .1(l — x ) hlu(x ,A ,...,X ) for all x ~ T (12)

AE{o ,1]
n_l

Li=2 i I j  ~ z n

where, in the product, 00 = 1. Characteristics of (12) are given in the

following theorem.

THEOREM 8. Suppose v is given by (12). Then v is affine preserving,

monotonicity preserving, conservatism preserving, and v(x) = u (x) whenever

(x ,. . . ,x ) € C0,l]~~
1
. Moreover, if I > 1 then v Is a linear function of

2 a —

x . when all x . for 3 # i are fixed. In addition, D(v,u) < max u (x) — mm u(x),

and if u is monotone increasing in all variables then D(v,u) < max [u (x ,l,. .. ,l)
_ _ _ _  _ _ _ _  

-____________________ 
— 

x
— u(x ,0 , . ..  ,0 ) ] .  1

PROOF. Monotonicity preservation for x is clear from (12). For i > 1

let i = 2 for definiteness. Then

_ _ _  
—:: - - 

.
•
~~~~ -

—~~~— -
~~~~~--~~-~~~~~ - -  -~~ 

.- —----~~ - -- -~~~~~--



v(x ,x ,x ,...,x )  = x 
~~~ f l 2  [~ x~

1(l — x.) ’][u(x ,i,~~~, . .. ,~~~)

— u(x ,0,~~ ,. ..,u)] + ~[flx j
1
(l — xj) 1]u(x ,O,~~ ,.

which shows that v is linear in x when the other x are fixed , and that v
2 1

preserves monotonicity in x . Since other aspects of the theorem are obvious
2

except for conservatism preservation, we conclude with a proof of this aspect.

Assume that u is conservative. To show that v too is conservative it will

suffice to consider x versus x and x versus x . Suppose first that
1 2 2 3

x > y and x > y . By the preceding equation,
1 1 2 2

a
v(y ,x ,x ,...,x ) — v(y ,y ,x ,... ,x ) = (x — y )~~(It)[ii(y ,l,j.i)1 2 3 n 1 2 3 n 2 2 3 1

— u(y  ,O ,ii ) 1.

This remains valid when y is replaced by x throughout. Since x > y and
1 1 2 2

since u(y ,l,ji) — u(y ,0 ,~~) > u (x ,1,~ i)  — u (x  ,0 ,~i) by conservatism of u ,
1 1 1

v(y ,x ,x ,...) — v(y ,y ,x ,...) > v(x ,x ,x ,...) — v(x ,y ,x ,...),
1 2 3 1 2 3 1 2 3 i 2 3

which says that v is conservative in x and x . - For x versus x suppose
1 2 2 3

that x > y and x > y . By a similar procedure to that just used it follows
2 2 3 3

that v(x ,y,x ,x ,...) — v(x ,y ,y ,x ,...) > v(x ,x ,x ,x ,...) —
1 2 3 ~. 1 2 3 Ii 1 2 3 ~.

v(x ,x ,y ,x ,...), and hence that v is conservative in x and x , if and only
1 2 3 ‘. 2 3

if

~~{0~ 1}
n_3 [~

x~~(l 
- xi

) i][u(x l O p )  ÷ u(x ,0 ,l ,p) - u(x , 0 ,0 ,p)

— u(x ,l,l ,p) I > 0.

This is true by the conservatism of u. Q.E.D.

1 L 1  



- — - - _—-—-- --- - - 
—~~~~~~~ 

26

A Multi linear Approximation

We conclude with a simp lification of the preceding approximation that

is based solely on multilinear interpolation of the u values at the 2”

vertices of T. With A = (A ,... ,A ), the multilinear approximation is

r A I A .1
v(x) = I It x .~~(l — x~) 

11u(A ) for all x E 1. (13)
AECO ,J} 11Li= 1 3.

This is the only approximation in the paper that does not require estimation

of any conditional utility functions. Although it is quite simple it may

serve well in some cases. The following theorem summarizes aspects of (13).

Its proof is similar to the preceding proof and will be omitted.

THEOREM 9. Suppose v is given by (13). Then v is affine preserving,

monotonicity preserving, conservatism preserving, v(X) = u(A) for all

A € {o.l}~ , v is linear in each x~, and D(v,u) < max u(x) — mm u(x). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .:~~~~~~~
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